Copied to
clipboard

G = C56.9C23order 448 = 26·7

2nd non-split extension by C56 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C56.9C23, D5610C22, C28.60C24, C23.21D28, M4(2)⋊19D14, Dic289C22, D28.23C23, Dic14.23C23, (C2×C8)⋊5D14, (C2×C56)⋊8C22, C4.73(C2×D28), C8⋊D1413C2, C8.9(C22×D7), (C2×C4).157D28, (C2×C28).205D4, C28.239(C2×D4), (C2×M4(2))⋊5D7, D567C210C2, C4.57(C23×D7), C8.D1413C2, C4○D2817C22, (C2×D28)⋊53C22, C56⋊C210C22, C71(D8⋊C22), (C14×M4(2))⋊5C2, C2.29(C22×D28), C22.22(C2×D28), C14.27(C22×D4), (C2×C28).798C23, (C22×C14).120D4, (C22×C4).267D14, (C2×Dic14)⋊64C22, (C7×M4(2))⋊21C22, (C22×C28).268C22, (C2×C4○D28)⋊27C2, (C2×C14).64(C2×D4), (C2×C4).225(C22×D7), SmallGroup(448,1201)

Series: Derived Chief Lower central Upper central

C1C28 — C56.9C23
C1C7C14C28D28C2×D28C2×C4○D28 — C56.9C23
C7C14C28 — C56.9C23
C1C4C22×C4C2×M4(2)

Generators and relations for C56.9C23
 G = < a,b,c,d | a56=b2=1, c2=d2=a28, bab=a27, ac=ca, dad-1=a29, bc=cb, bd=db, cd=dc >

Subgroups: 1380 in 262 conjugacy classes, 107 normal (21 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C14, C2×M4(2), C4○D8, C8⋊C22, C8.C22, C2×C4○D4, C56, Dic14, Dic14, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×C14, D8⋊C22, C56⋊C2, D56, Dic28, C2×C56, C7×M4(2), C2×Dic14, C2×C4×D7, C2×D28, C4○D28, C4○D28, C2×C7⋊D4, C22×C28, D567C2, C8⋊D14, C8.D14, C14×M4(2), C2×C4○D28, C56.9C23
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, D28, C22×D7, D8⋊C22, C2×D28, C23×D7, C22×D28, C56.9C23

Smallest permutation representation of C56.9C23
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(2 28)(3 55)(4 26)(5 53)(6 24)(7 51)(8 22)(9 49)(10 20)(11 47)(12 18)(13 45)(14 16)(15 43)(17 41)(19 39)(21 37)(23 35)(25 33)(27 31)(30 56)(32 54)(34 52)(36 50)(38 48)(40 46)(42 44)(57 107)(58 78)(59 105)(60 76)(61 103)(62 74)(63 101)(64 72)(65 99)(66 70)(67 97)(69 95)(71 93)(73 91)(75 89)(77 87)(79 85)(80 112)(81 83)(82 110)(84 108)(86 106)(88 104)(90 102)(92 100)(94 98)(109 111)
(1 68 29 96)(2 69 30 97)(3 70 31 98)(4 71 32 99)(5 72 33 100)(6 73 34 101)(7 74 35 102)(8 75 36 103)(9 76 37 104)(10 77 38 105)(11 78 39 106)(12 79 40 107)(13 80 41 108)(14 81 42 109)(15 82 43 110)(16 83 44 111)(17 84 45 112)(18 85 46 57)(19 86 47 58)(20 87 48 59)(21 88 49 60)(22 89 50 61)(23 90 51 62)(24 91 52 63)(25 92 53 64)(26 93 54 65)(27 94 55 66)(28 95 56 67)
(1 68 29 96)(2 97 30 69)(3 70 31 98)(4 99 32 71)(5 72 33 100)(6 101 34 73)(7 74 35 102)(8 103 36 75)(9 76 37 104)(10 105 38 77)(11 78 39 106)(12 107 40 79)(13 80 41 108)(14 109 42 81)(15 82 43 110)(16 111 44 83)(17 84 45 112)(18 57 46 85)(19 86 47 58)(20 59 48 87)(21 88 49 60)(22 61 50 89)(23 90 51 62)(24 63 52 91)(25 92 53 64)(26 65 54 93)(27 94 55 66)(28 67 56 95)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,28)(3,55)(4,26)(5,53)(6,24)(7,51)(8,22)(9,49)(10,20)(11,47)(12,18)(13,45)(14,16)(15,43)(17,41)(19,39)(21,37)(23,35)(25,33)(27,31)(30,56)(32,54)(34,52)(36,50)(38,48)(40,46)(42,44)(57,107)(58,78)(59,105)(60,76)(61,103)(62,74)(63,101)(64,72)(65,99)(66,70)(67,97)(69,95)(71,93)(73,91)(75,89)(77,87)(79,85)(80,112)(81,83)(82,110)(84,108)(86,106)(88,104)(90,102)(92,100)(94,98)(109,111), (1,68,29,96)(2,69,30,97)(3,70,31,98)(4,71,32,99)(5,72,33,100)(6,73,34,101)(7,74,35,102)(8,75,36,103)(9,76,37,104)(10,77,38,105)(11,78,39,106)(12,79,40,107)(13,80,41,108)(14,81,42,109)(15,82,43,110)(16,83,44,111)(17,84,45,112)(18,85,46,57)(19,86,47,58)(20,87,48,59)(21,88,49,60)(22,89,50,61)(23,90,51,62)(24,91,52,63)(25,92,53,64)(26,93,54,65)(27,94,55,66)(28,95,56,67), (1,68,29,96)(2,97,30,69)(3,70,31,98)(4,99,32,71)(5,72,33,100)(6,101,34,73)(7,74,35,102)(8,103,36,75)(9,76,37,104)(10,105,38,77)(11,78,39,106)(12,107,40,79)(13,80,41,108)(14,109,42,81)(15,82,43,110)(16,111,44,83)(17,84,45,112)(18,57,46,85)(19,86,47,58)(20,59,48,87)(21,88,49,60)(22,61,50,89)(23,90,51,62)(24,63,52,91)(25,92,53,64)(26,65,54,93)(27,94,55,66)(28,67,56,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,28)(3,55)(4,26)(5,53)(6,24)(7,51)(8,22)(9,49)(10,20)(11,47)(12,18)(13,45)(14,16)(15,43)(17,41)(19,39)(21,37)(23,35)(25,33)(27,31)(30,56)(32,54)(34,52)(36,50)(38,48)(40,46)(42,44)(57,107)(58,78)(59,105)(60,76)(61,103)(62,74)(63,101)(64,72)(65,99)(66,70)(67,97)(69,95)(71,93)(73,91)(75,89)(77,87)(79,85)(80,112)(81,83)(82,110)(84,108)(86,106)(88,104)(90,102)(92,100)(94,98)(109,111), (1,68,29,96)(2,69,30,97)(3,70,31,98)(4,71,32,99)(5,72,33,100)(6,73,34,101)(7,74,35,102)(8,75,36,103)(9,76,37,104)(10,77,38,105)(11,78,39,106)(12,79,40,107)(13,80,41,108)(14,81,42,109)(15,82,43,110)(16,83,44,111)(17,84,45,112)(18,85,46,57)(19,86,47,58)(20,87,48,59)(21,88,49,60)(22,89,50,61)(23,90,51,62)(24,91,52,63)(25,92,53,64)(26,93,54,65)(27,94,55,66)(28,95,56,67), (1,68,29,96)(2,97,30,69)(3,70,31,98)(4,99,32,71)(5,72,33,100)(6,101,34,73)(7,74,35,102)(8,103,36,75)(9,76,37,104)(10,105,38,77)(11,78,39,106)(12,107,40,79)(13,80,41,108)(14,109,42,81)(15,82,43,110)(16,111,44,83)(17,84,45,112)(18,57,46,85)(19,86,47,58)(20,59,48,87)(21,88,49,60)(22,61,50,89)(23,90,51,62)(24,63,52,91)(25,92,53,64)(26,65,54,93)(27,94,55,66)(28,67,56,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(2,28),(3,55),(4,26),(5,53),(6,24),(7,51),(8,22),(9,49),(10,20),(11,47),(12,18),(13,45),(14,16),(15,43),(17,41),(19,39),(21,37),(23,35),(25,33),(27,31),(30,56),(32,54),(34,52),(36,50),(38,48),(40,46),(42,44),(57,107),(58,78),(59,105),(60,76),(61,103),(62,74),(63,101),(64,72),(65,99),(66,70),(67,97),(69,95),(71,93),(73,91),(75,89),(77,87),(79,85),(80,112),(81,83),(82,110),(84,108),(86,106),(88,104),(90,102),(92,100),(94,98),(109,111)], [(1,68,29,96),(2,69,30,97),(3,70,31,98),(4,71,32,99),(5,72,33,100),(6,73,34,101),(7,74,35,102),(8,75,36,103),(9,76,37,104),(10,77,38,105),(11,78,39,106),(12,79,40,107),(13,80,41,108),(14,81,42,109),(15,82,43,110),(16,83,44,111),(17,84,45,112),(18,85,46,57),(19,86,47,58),(20,87,48,59),(21,88,49,60),(22,89,50,61),(23,90,51,62),(24,91,52,63),(25,92,53,64),(26,93,54,65),(27,94,55,66),(28,95,56,67)], [(1,68,29,96),(2,97,30,69),(3,70,31,98),(4,99,32,71),(5,72,33,100),(6,101,34,73),(7,74,35,102),(8,103,36,75),(9,76,37,104),(10,105,38,77),(11,78,39,106),(12,107,40,79),(13,80,41,108),(14,109,42,81),(15,82,43,110),(16,111,44,83),(17,84,45,112),(18,57,46,85),(19,86,47,58),(20,59,48,87),(21,88,49,60),(22,61,50,89),(23,90,51,62),(24,63,52,91),(25,92,53,64),(26,65,54,93),(27,94,55,66),(28,67,56,95)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28R56A···56X
order122222222444444444777888814···1414···1428···2828···2856···56
size1122228282828112222828282822244442···24···42···24···44···4

82 irreducible representations

dim1111112222222244
type++++++++++++++
imageC1C2C2C2C2C2D4D4D7D14D14D14D28D28D8⋊C22C56.9C23
kernelC56.9C23D567C2C8⋊D14C8.D14C14×M4(2)C2×C4○D28C2×C28C22×C14C2×M4(2)C2×C8M4(2)C22×C4C2×C4C23C7C1
# reps1444123136123186212

Matrix representation of C56.9C23 in GL6(𝔽113)

010000
112240000
0000980
00015063
009810400
00159098
,
11200000
8910000
001000
007211200
00091112111
001122201
,
100000
010000
0015000
0001500
0000150
0000015
,
11200000
01120000
0015000
0001500
0000980
0009098

G:=sub<GL(6,GF(113))| [0,112,0,0,0,0,1,24,0,0,0,0,0,0,0,0,98,15,0,0,0,15,104,9,0,0,98,0,0,0,0,0,0,63,0,98],[112,89,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,112,0,0,0,112,91,22,0,0,0,0,112,0,0,0,0,0,111,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,15,0,0,0,0,0,0,15,0,0,0,0,0,0,15,0,0,0,0,0,0,15],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,15,0,0,0,0,0,0,15,0,9,0,0,0,0,98,0,0,0,0,0,0,98] >;

C56.9C23 in GAP, Magma, Sage, TeX

C_{56}._9C_2^3
% in TeX

G:=Group("C56.9C2^3");
// GroupNames label

G:=SmallGroup(448,1201);
// by ID

G=gap.SmallGroup(448,1201);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,184,675,570,80,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^56=b^2=1,c^2=d^2=a^28,b*a*b=a^27,a*c=c*a,d*a*d^-1=a^29,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations

׿
×
𝔽